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Scaling behavior of diffusion and reaction processes in percolating porous media
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We investigate the diffusion-reaction behavior of two-dimensional pore networks at the critical percolation
point. Our results indicate the existence of three distinct regimes of reactivity, determined by parameter
j[D/(Kl 2), whereD is the molecular diffusivity of the reagent,K is its chemical reaction coefficient, andl is
the length scale of the pore. First, when the diffusion transport is strongly limited by chemical reaction~i.e.,
D!K), we recover the classical scaling behaviorF;Lj1/2, whereF is the mass flux of reagent penetrating
the pore space andL is the system size. Second, at an intermediate range ofj values, when the process is
influenced by the fractal morphology of the percolation cluster, we observe an anomalous diffusion scaling,
F;La/2jb, with an exponentb'0.34. Third, in the absence of diffusional limitation (D@K), the flux of
reagent reaches a saturation limitFsat that scales with the system size asFsat;La, with an exponenta
'1.89, corresponding to the fractal dimension of the sample-spanning cluster. We then show that the variation
of flux F calculated for different network sizes at the second and third regimes can be adequately described in
terms of the scaling relation,F;La f (j/Lz), where the crossover exponentz'2.69 is consistent with the
predicted scaling lawa52bz.
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I. INTRODUCTION

Due to its broad technological applications, hetero
neous catalysis has been the subject of extensive resear
many fields of chemistry, engineering, and physics@1–3#. In
particular, the development of models for the description
diffusion and reaction in disordered media represents an
portant step for the design of real porous catalysts. For
stance, the size of the catalyst pellet is frequently used
design parameter for packed bed reactors when diffusio
limitations to mass transport restrict the free access of
agent species into the deepest regions of the porous
strate. This is a typical situation where diffusion appears
an undesirable mechanism since it can significantly red
the reactivity of the available catalytic surface area. Fr
this point of view, small pellets would be the preferred fillin
material for a fixed bed reactor, if the packings resulti
from their assemblage were not so ‘‘tight,’’ requiring a lar
consumption of energy to pump the reacting species thro
the extra-particle void space. Certainly, this important tra
off between catalyst efficiency and energy consumption
to be carefully investigated within the framework of realis
models for the diffusion-reaction system.

There are two essential aspects for the comprehensio
physical processes in porous catalysts: the structural
phenomenological aspects. The first is intimately associa
with morphological characteristics of the interstitial po
space and the second makes reference to the tran
mechanisms and physico-chemical interactions taking p
at the pore level. The traditional approach to this problem
to assume the catalyst as a pseudohomogeneous medium
mathematically model the diffusion-reaction phenomen
under steady-state conditions as
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whereC is the concentration of reagent,Deff is an effective
diffusion coefficient, andR represents the intrinsic kinetic
of the reaction mechanism, expressing the rate of creatio
annihilation per unit volume of the reacting species. A
though valid for most Euclidean geometries and homo
neous media, this classical diffusion formalism breaks do
as a macroscopic description for transport phenomena in
ordered materials withheterogeneous geometry. For ex-
ample, anomalies in the form of a subdiffusive regime
transport through the complex structure of fractal mater
have been observed in experiments and extensively inv
gated through numerical simulations@4,5#. Few studies,
however, have been dedicated to the investigation of di
sion and reaction in fractal media, and its consequence
the reactive properties of porous catalysts@6–10#.

Extrapolating the descriptive features of the pseudohom
geneous representation Eq.~1!, capillary network models are
based on a detailed description of structure and phenome
ogy and so can provide a more realistic interpretation for
diffusion-reaction phenomenon in porous catalysts@11–14#.
In a previous study@15#, this class of models has been us
to investigate the problem of diffusion and reaction in poro
catalysts subjected to percolation disorder. Just above
critical point, the incipient infinite percolation cluster is a
example of a random fractal that can be used as a conce
model for real pore catalysts. The results from steady-s
simulations revealed the strong influence of the pore fra
lity on the global effectiveness of the diffusion-reaction sy
tem. As a consequence of the scaling behavior obser
within a specific range of diffusion-reaction conditions, it h
been shown that the effectiveness of the pore catalyst ca
largely overestimated if the self-similar aspect of the vo
space is not properly taken into consideration.

In the present study, we investigate the scaling proper
of the catalytic effectiveness of two-dimensional percolat
©2003 The American Physical Society06-1
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pore networks at criticality. We show through extensive n
merical simulations that the finite-size scaling analysis of
percolating system is compatible with a scalingansatzthat
accounts for the dependence of the effectiveness on the
tem size and diffusion-reaction conditions. This paper is
ganized as follows. In Sec. II, we present the mathemat
model to simulate diffusion and reaction in percolating p
rous media. We show the results in Sec. III and Sec.
comprises discussion and summary.

II. MODEL FORMULATION

We first describe the geometry of the disordered sys
studied here. Our basic model of a porous catalyst has
origins on a two-dimensional square lattice, from which
bond percolation cluster is extracted at criticality@5,16#. We
assume that the inner surface of every open pore of cons
length l and radiusr has a homogeneous distribution of a
tive sites, where a first-order reaction (A→B) takes place.
Also, if the reactant and product molecules are considera
smaller than the capillary radiusr, a continuum description
for diffusion and reaction is representative of the cataly
phenomenon at the pore level. The concentration profilec(x)
of the reactive tracerA diffusing inside a typical open por
joining adjacent nodesi andj satisfies the mass conservatio
equation

D
d2c

dx2
5Kc, ~2!

wherex is the axial coordinate in the pore,D is the molecular
diffusion coefficient, andK is the intrinsic reaction rate con
stant. The following boundary conditions are employed:

c~0!5ci and c~ l !5cj , ~3!

and the molar flux of the tracer into a pore is given by

Ji j 52pr 2DS dc

dxUx50D
i j

. ~4!

From the solution of Eqs.~2! and~3!, Ji j can be expressed a
a linear function of the two concentrations at neighbor nod

Ji j 5pr 2~KD !1/2F ci

tanh~ l /l!
2

cj

sinh~ l /l!G , ~5!

wherel[(D/K)1/2. The molecular diffusion approximatio
used here can only be locally valid if the mean free path
the diffusing reactant is sufficiently smaller than the po
radius. The molecular mean free path constitutes a lo
cutoff for the validity of our description. If the pore surfac
presents smaller geometrical features, it results in an equ
lent intrinsic reactivity determined by the Knudsen regime
diffusion @9,17#. Considering the nodes to be perfect mixin
points with no reaction or tracer accumulation, mass con
vation gives
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Ji j 50, ~6!

where the sum runs over thed nodesj 51, . . . ,d connected
to nodei in the capillary network. A fixed concentrationC0
at the entrance of the inlet pores is imposed along with
riodic boundary conditions in the transverse direction of
lattice and gradientless boundary conditions at the exit of
outlet pores. The solution of the system of linear algebr
equations~6! subjected to these constraints is calculated
terms of the node concentration field by means of a stand
subroutine for sparse matrices. Finally, we compute the t
flux penetrating the system as

F5pr 2~KD !1/2(
j 51

d F C0

tanh~ l /l!
2

cj

sinh~ l /l!G , ~7!

where the sum is over the nodes connected to the exis
pores that constitute the inlet face of the network with co
stant concentrationC0.

III. RESULTS

We performed simulations with 3200, 1600, 800, 40
and 200 realizations of networks of sizeL532, 64, 128,
256, and 512, respectively, generated at the critical po
p5pc , and for a wide range of values of parameterj
[D/(Kl 2)5(l/ l )2. For each realization, we compute flu
F and average it over all samples. Figure 1 is a logarithm
plot showing the dependence onj of the average mass flu
for different network sizes. For comparison, we also sh
the reactive behavior of a fully occupied lattice (p51) of
size L5512 for the same range ofj values. Three distinct
regimes of diffusion reaction can be clearly identified in t
case of networks at criticality. First, a typical scaling regi

FIG. 1. Log-log plot of the reagent mass fluxF penetrating the
pore network versus the diffusion-reaction parameterj. From the
bottom to the top, the solid lines correspond to critical percolat
networks with sizesL532, 64, 128, 256, and 512. For compariso
the dashed line is the result for a fully occupied network (p51).
6-2
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at low values ofj crosses over to another power-law zon
but with a smaller exponent. The second scaling region
tending over an intermediate range ofj values eventually
saturates to reach a maximum mass flux that strongly
pends on the system size. In the case of the first sca
region, two equivalent situations can be representative of
diffusion-reaction phenomenon: either the reactant diffu
very slowly into the catalyst pore space, or it is rapidly co
sumed at the active surface area of the access capillarie
one case or the other, since the reagent mass flux rem
confined to the inlet pores of the lattice, we recover the c
sical scaling behavior for diffusion and reaction in a sing
smooth pore,

F;Lj1/2, ~8!

where j1/2 is a local measure of the diffusive penetrati
extent limited by chemical reaction. FactorL accounts for
the fact that an average number ofpL capillaries are acces
sible for diffusion and reaction at the network entrance,
though some of these tubes might not belong to the sam
spanning cluster. To ensure the validity of our continuu
approach at the pore level in terms of the molecular diffus
description Eq.~2!, here we assume that the minimum val
used for l in all simulations,lmin5(jmin)

1/2l'0.03l , is
very large compared to the mean free path of the reag
species.

By gradually increasingj, the reagent species can pe
etrate deeper into the percolation porous media before b
depleted at the surface of the pores. At very large valuesj
~i.e., in the absence of diffusional limitations!, the reagent
species have free access to the active surface of all por
the percolating cluster. The mass flux reaches a satura
valueFsat that is strictly reactive and therefore proportion
to the total accessible volume of the pore network. In p
ticular, for a first-order reaction taking place in a percolati
network at criticality, it follows that

Fsat;La, ~9!

where a'1.89 is the fractal dimension of the sampl
spanning cluster@5,16#. In Fig. 2 we show a log-log plot o
the variation ofFsat on the system sizeL. The best linear fit
to the data is quite consistent with the power-law behav
Eq. ~9! and the resulting exponenta51.8960.03 is in ex-
cellent agreement with the expected value.

At intermediate values ofj, all curves in Fig. 1 corre-
sponding to networks at criticality~solid lines! display a
crossover to a second scaling zone that starts atj'1 and
persists for more than four orders of magnitude. As shown
Fig. 3, this change is better visualized if we simply resc
flux F by factorpL. Apart from the collapse of the profile
at the initial scaling region, this transformation also revea
typical finite-size effect at the second scaling zone tha
reminiscent of the dynamical roughening observed in so
surface growth models@18#. In this region ofj values, the
reagent species experiences the fractal structure of
sample-spanning cluster. As a consequence, we can ide
a well-defined region where the penetrating flux follows t
scaling form
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F;La/2jb, ~10!

whereb is a scaling exponent. From the least-squares fi
the L5512 data in the scaling region, we obtainb50.34
60.02. This value is consistent with the anomalous diffus
exponent, 1/dw'0.348, observed for a random walk proce
in the two-dimensional sample-spanning cluster@4#. Such a
correspondence can be explained by means of the follow
scaling argument@15#. If we consider that the penetrationL
in this regime should scale asL;(Dt)1/dR, wheredR is the
critical exponent for diffusion reaction, and make use of

FIG. 2. Log-log plot of the saturation fluxFsatversus the system
sizeL for critical percolation networks~circles!. The straight line is
the least-square fit to the data, with the number indicating slopa
51.8960.03.

FIG. 3. Log-log plot of the rescaled fluxF/(pL) versus the
diffusion-reaction parameterj for critical percolation networks and
L532, 64, 128, 256, 512. The straight lines are the least-square
to the data in the traditional and anomalous regions of diffus
reaction, with the numbers indicating slopes 0.5 andb50.34
60.02, respectively. For comparison, the inset shows the result
critical ~solid line! and noncritical~dashed line! pore networks of
sizeL5512.
6-3
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lations F;La/2L and K;t21, we obtain the time-
independent relationF;La/2j1/dR. Accordingly, the critical
exponentdR should be equal to the two-dimensional rando
walk exponent on the incipient cluster,dw'2.87. Indeed,
this is consistent with the exponent obtained from our sim
lations, dR51/b'2.94. The inset of Fig. 3 reinforces th
fact that the behavior of the system at criticality is marke
different from the diffusion-reaction response of the hom
geneous network (p51) for j.1.

The valuej3 at which the fluxF crosses over from the
power-law behavior Eq.~10! to the saturation regime of Eq
~9! provides another scaling signature for the diffusio
reaction process. Indeed, the logarithmic plot shown in Fig
clearly indicates thatj3 depends on the system size as

j3;Lz, ~11!

with an exponentz52.6960.03. At this point, we sug-
gest that fluxF follows the scaling relation@19#

F;La f S j

LzD , ~12!

wheref (u) is a scaling function@18#. As shown in Fig. 5, the
data collapse obtained by rescalingF andj by La andLz,
respectively, confirms the validity of the scaling form~12!.
Furthermore, a direct relation among exponentsa, b andz
can be obtained. If we approach the crossover point from
left, we find F(j3);La/2j3

b , while if we do it from the
right, it follows thatF(j3);La. Comparing these relations
we obtain thatLa/2j3

b ;La and, from Eq.~11!, it is possible
to write the following scaling law:

a52bz. ~13!

FIG. 4. Log-log plot of the crossoverj3 versus the system siz
L for critical percolation networks~circles!. The straight line is the
least-square fit to the data, with the number indicating slopz
52.6960.03.
06140
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Substituting into Eq.~13! the values found forb andz, gives
a'1.83, a value that is consistent with the calculated frac
dimension for the sample-spanning cluster,a51.8960.03.

IV. CONCLUSIONS

The percolation theory certainly provides a useful mo
framework to study a large variety of systems displayi
both structural disorder and statistical self-similarity. In p
ticular, the percolation geometry has been frequently use
a conceptual paradigm for transport phenomena in po
connected porous media. As mentioned in the Introduct
the present study has special relevance to the field of het
geneous catalysis. For example, due to coke deposition
gradual loss of connectivity in the active space of poro
catalysts can impose severe drawbacks to the overall
ciency of the desired chemical reaction process. The si
tion can become even worse if the conversion of reagen
the pore level is limited by diffusive mechanisms of ma
transfer. It is therefore important to elucidate the effect
the catalyst activity of the porous geometry in a margin
state of critical connectivity ~e.g., at the percolation
threshold!.

In summary, we addressed the problem of diffusion a
reaction processes occurring in two-dimensional pore n
works at criticality. Our results show that, at an intermedi
range of the parameterj, where the competition betwee
diffusion and chemical reaction is relevant, the reactivity
the catalytic media is rather sensitive to the structural det
of its pore space. Precisely, in this region, the reagent m
flux F penetrating the system displays scaling behaviorF
;La/2jb, with an exponentb'0.34 that can be identified a
the inverse of the random walk exponent for the samp
spanning cluster, 1/dw . Moreover, the finite-size scaling
analysis of our simulation data, in the anomalous scaling
saturation regimes of diffusion reaction, reveals that it is p
sible to describe the behavior ofF at moderate and large
values ofj in terms of scaling relation.

The implications of our results are manifold. An impo
tant one is related to the large discrepancy found between

FIG. 5. Data collapse obtained by rescalingF and j with La

andLz, respectively.
6-4



in
ri

ta
n

e,
re
co
an
.

ity

r
tr

ow-
ol-
m-

This

able
the

he

nd

SCALING BEHAVIOR OF DIFFUSION AND REACTION . . . PHYSICAL REVIEW E67, 061406 ~2003!
diffusion-reaction behaviors of critical (p5pc) and noncriti-
cal (p51) pore networks, specially in the limited range ofj
values where the fractal geometry of the critical percolat
structure has a marked influence on its diffusive characte
tics. Our results give unambiguous evidence that the de
of the pore space morphology can have a dramatic influe
on the effectiveness of the porous catalyst. For instanc
the self-similar aspect of the material is not duly conside
in the geometrical representation of the pore space, the
sumption of reagent can be largely overestimated by
modeling approach to the diffusion-reaction phenomenon

Another point of potential interest refers to the possibil
of designing porous substrates for specific applications
heterogeneous catalysis. Clearly, we have presented he
typical case study in which the critical percolation geome
in

s

e
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has a deleterious effect on the catalyst performance. H
ever, other situations can arise where this type of morph
ogy and a particular diffusion-reaction mechanism may co
bine to enhance the yield of a desired chemical species.
could be the case, for example, whenshape selectivityeffects
associated with hindered diffusion mechanisms are cap
of influencing a given reaction sequence taking place at
catalytic pore space@20–22#. Finally, we expect that this
study can provide useful insight into the interpretation of t
behavior of real catalysts.
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